Saturday, 23 August 2014

Pythagorean triple

Pythagorean triple


                                                                                                                                                Manisha 
                                                                                                                                                        Lect. Maths,GSSS Town Hall, Asr
The Pythagorean theorem : 
                                                                          Perp2 + base2 = Hyp2
A triple is commonly written (a, b, c), and a well-known example is (3, 4, 5).

                                     a2 + b2 = c2

 A primitive Pythagorean triple is one in which a, b and c are coprime. A right triangle whose sides form a Pythagorean triple is called a Pythagorean triangle.

The name is derived from the Pythagorean theorem by famous mathematician  Pythagoras , stating that every right triangle has side lengths satisfying the formula a2 + b2 = c2; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides a = b = 1 and c = √2 is right, but (1, 1, √2) is not a Pythagorean triple because √2 is not an integer. Moreover, 1 and √2 do not have an integer common multiple because √2 is irrational.

There are 16 primitive Pythagorean triples with c ≤ 100:
(3, 4, 5 )
(5, 12, 13)
(8, 15, 17)
(7, 24, 25)
(20, 21, 29)
(12, 35, 37)
( 9, 40, 41)
(28, 45, 53)
(11, 60, 61)
(16, 63, 65)
(33, 56, 65)
(48, 55, 73)
(13, 84, 85)
(36, 77, 85)
(39, 80, 89)
(65, 72, 97)
Note, for example, that (6, 8, 10) is not a primitive Pythagorean triple, as it is a multiple of (3, 4, 5). Each one of these low-c points forms one of the more easily recognizable radiating lines in the scatter plot.
Additionally these are all the primitive Pythagorean triples with 100 < c ≤ 300:
(20, 99, 101)
(60, 91, 109)
(15, 112, 113)
(44, 117, 125)
(88, 105, 137)
(17, 144, 145)
(24, 143, 145)
(51, 140, 149)
(85, 132, 157)
(119, 120, 169)
(52, 165, 173)
(19, 180, 181)
(57, 176, 185)
(104, 153, 185)
(95, 168, 193)
(28, 195, 197)
(84, 187, 205)
(133, 156, 205)
(21, 220, 221)
(140, 171, 221)
(60, 221, 229)
(105, 208, 233)
(120, 209, 241)
(32, 255, 257)
(23, 264, 265)
(96, 247, 265)
(69, 260, 269)
(115, 252, 277)
(160, 231, 281)
(161, 240, 289)
(68, 285, 293)

                                                                                                                    

No comments:

Post a Comment